Bayesian Calibration of Generalized Pools of Predictive Distributions
نویسندگان
چکیده
Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to derive a combined and calibrated density function using random calibration functionals and random combination weights. In particular, it compares the application of linear, harmonic and logarithmic pooling in the Bayesian combination approach. The three combination schemes, i.e., linear, harmonic and logarithmic, are studied in simulation examples with multimodal densities and an empirical application with a large database of stock data. All of the experiments show that in a beta mixture calibration framework, the three combination schemes are substantially equivalent, achieving calibration, and no clear preference for one of them appears. The financial application shows that the linear pooling together with beta mixture calibration achieves the best results in terms of calibrated forecast.
منابع مشابه
Non-linear Bayesian prediction of generalized order statistics for liftime models
In this paper, we obtain Bayesian prediction intervals as well as Bayes predictive estimators under square error loss for generalized order statistics when the distribution of the underlying population belongs to a family which includes several important distributions.
متن کاملDynamic Bayesian Information Measures
This paper introduces measures of information for Bayesian analysis when the support of data distribution is truncated progressively. The focus is on the lifetime distributions where the support is truncated at the current age t>=0. Notions of uncertainty and information are presented and operationalized by Shannon entropy, Kullback-Leibler information, and mutual information. Dynamic updatings...
متن کاملBayesian Nonparametric Calibration and Combination of Predictive Distributions
We introduce a Bayesian approach to predictive density calibration and combination that accounts for parameter uncertainty and model set incompleteness through the use of random calibration functionals and random combination weights. Building on the work of Ranjan, R. and Gneiting, T. (2010) and Gneiting, T. and Ranjan, R. (2013), we use in finite beta mixtures for the calibration. The proposed...
متن کاملAssessment of parametric uncertainty for groundwater reactive transport modeling
The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gauss...
متن کاملE-Bayesian Estimations of Reliability and Hazard Rate based on Generalized Inverted Exponential Distribution and Type II Censoring
Introduction This paper is concerned with using the Maximum Likelihood, Bayes and a new method, E-Bayesian, estimations for computing estimates for the unknown parameter, reliability and hazard rate functions of the Generalized Inverted Exponential distribution. The estimates are derived based on a conjugate prior for the unknown parameter. E-Bayesian estimations are obtained based on th...
متن کامل